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The most widely used algorithm for Monte Carlo sampling of electronic transitions in trajectory
surface hopping~TSH! calculations is the so-called anteater algorithm, which is inefficient for
sampling low-probability nonadiabatic events. We present a new sampling scheme~called the army
ants algorithm! for carrying out TSH calculations that is applicable to systems with any strength of
coupling. The army ants algorithm is a form of rare event sampling whose efficiency is controlled
by an input parameter. By choosing a suitable value of the input parameter the army ants algorithm
can be reduced to the anteater algorithm~which is efficient for strongly coupled cases!, and by
optimizing the parameter the army ants algorithm may be efficiently applied to systems with
low-probability events. To demonstrate the efficiency of the army ants algorithm, we performed
atom–diatom scattering calculations on a model system involving weakly coupled electronic states.
Fully converged quantum mechanical calculations were performed, and the probabilities for
nonadiabatic reaction and nonreactive deexcitation~quenching! were found to be on the order of
1028. For such low-probability events the anteater sampling scheme requires a large number of
trajectories (;1010) to obtain good statistics and converged semiclassical results. In contrast by
using the new army ants algorithm converged results were obtained by running 105 trajectories.
Furthermore, the results were found to be in excellent agreement with the quantum mechanical
results. Sampling errors were estimated using the bootstrap method, which is validated for use with
the army ants algorithm. ©2004 American Institute of Physics.@DOI: 10.1063/1.1641019#

I. INTRODUCTION

The most accurate way to describe a chemical system
theoretically is to treat the entire system quantum mechani-
cally. Currently, however, exact quantum mechanical calcu-
lations on chemical systems have been restricted to small
chemical systems~involving two to six atoms for electroni-
cally adiabatic processes and two or three atoms for elec-
tronically nonadiabatic processes! because of the computa-
tional cost involved. On the other hand, classical mechanics
may be used to model much larger systems but this is inad-
equate for systems where quantum effects play an important
role. ‘‘Semiclassical’’ dynamical methods attempt to find an
effective compromise between an entirely quantum mechani-
cal treatment and completely classical treatment. In the
present paper we are concerned with semiclassical trajectory
methods, in which quantum mechanics is used to treat the
electronic degrees of freedom, and the nuclear degrees of
freedom are modeled as an ensemble of classical trajectories.
This kind of semiclassical method has been widely used for
electronically nonadiabatic collisions and photochemical re-
actions, and several reviews are available.1–13

Trajectory surface hopping~TSH! methods14–54 are one
group of semiclassical trajectory methods which incorporate
electronic transitions into the overall dynamics by allowing

the classical trajectories in the ensemble to make sudden
hops ~also called switches! between the coupled potential
energy surfaces. Specifically, each trajectory in the ensemble
is propagated independently, and at small time intervals
along each trajectory, a hopping probability is computed.
Tully proposed a fewest-switches prescription for the hop-
ping probability such that the nuclear and electronic degrees
of freedom evolve self-consistently.22 In the widely used ant-
eater implementation of TSH, trajectories hop between states
according to the hopping probability.

In general, the strength of the coupling between the po-
tential energy surfaces governs the probability of nonadia-
batic events and also the number of trajectories required in
the ensemble to obtain converged results using the anteater
implementation of TSH. For example, if the probability of a
nonadiabatic event is on the order of 1021 or 1022, then
three to five thousand trajectories are required to obtain good
statistics, whereas in cases where the potential energy sur-
faces are very weakly coupled, and nonadiabatic events are
rare, e.g., on the order of 1028, the anteater algorithm re-
quires on the order of 108 trajectories to sample even a single
nonadiabatic event, and sampling with good statistics is im-
practical. In fact, adequate sampling is already impractical
for nonadiabatic probabilities on the order of 1025. There-
fore, it has not been possible to model polyatomic systems
with weakly coupled surfaces using the available TSH algo-
rithms. In this paper, we present a new algorithm~called the
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army ants algorithm! that is designed to efficiently handle
weakly coupled systems. This new algorithm may be consid-
ered a form of rare event sampling for the nonadiabatic pro-
cesses. Although rare event sampling has been widely stud-
ied, and many algorithms are available,55–63 essentially all
previous work has been based on transition state concepts
where the sampling occurs at a reasonably well-localized dy-
namical bottleneck, whereas the present algorithm can treat
rare and delocalized nonadiabatic events that may occur at
any point along a trajectory.

One motivation for our recent studies of TSH methods
has been to test them against accurate quantum
dynamics.25,27,32–34,36,41–44,46,53Because it has been impracti-
cal to study dynamics for systems with very small semiclas-
sical transition probabilities, these tests have been carried out
for systems with nonadiabatic probabilities of 331024 and
larger. The army ants algorithm allows us to extend these
tests down to much lower probabilities; for example, in the
present paper we present well-converged calculations for a
system with a nonadiabatic transition probability of
131028. We will test not only the Tully’s fewest switches22

~TFS! surface hopping method, but also a variant of the TFS
method called the fewest-switches with time uncertainty
~FSTU! surface hopping method46 that was previously
shown46,53 to be more accurate than the TFS method for
nonadiabatic probabilities in the range 131022 to 3
31024. In particular we test the original version of the TFS
method~TFS with reflection at frustrated hops, called TFS
2) and three versions of the FSTU method (FSTU2,
FSTU1, and FSTU¹V!. All of these methods can be applied
with either the anteater scheme~which was first denoted
‘‘anteater’’ by Tully22! or the new army ants sampling
scheme.

In addition, we validate the bootstrap method for esti-
mating Monte Carlo sampling errors. Although formulas for
sampling errors can be derived for many of the quantities
and algorithms employed in trajectory calculations,3 there
are many other cases where error formulas are hard to derive.
The army ants algorithm provides an example of such a
problem. The bootstrap method64–66provides a general solu-
tion to the problem of estimating sampling errors, and in the
present article we validate it and use it successfully for this
purpose.

We summarize the existing sampling algorithms in Sec.
II, and present the details of the army ants algorithm in Sec.
III. The model system used for the calculations is described
in Sec. IV. Section V contains the formulas for analysis of
final product states. The bootstrap method of error analysis is
presented in Sec. VI. Section VII provides details of all cal-
culations performed and the results obtained. A discussion
is provided in Sec. VIII and conclusions are presented in
Sec. IX.

II. SAMPLING ALGORITHMS FOR TSH

In the TSH method, an ensemble of trajectories is used
to model the nuclear dynamics, and each trajectory evolves
classically under the influence of a single potential energy
surface. The single surface propagation is interrupted at
small time intervals by decision points at which electronic

transitions may occur. At each decision point~which we la-
bel by their timestn) the electronic transition probability
Pa→b(tn) is computed, wherea is the occupied potential
energy surface andb is the target potential energy surface.
The TFS method definesPa→b(tn) based on the local net
flux of probability density such that the self-consistency of
electronic and nuclear motions is maintained.22,23,30 ~Actu-
ally, when ‘‘frustrated hops’’ are encountered, this self-
consistency is also frustrated. We defer consideration of this
aspect to Sec. III.! Tully15,22 proposed two schemes for sam-
pling Pa→b(tn) along the classical trajectory, which he called
the ants and the anteater algorithms.

Before we discuss the ants and the anteater algorithms, it
is useful to introduce the concept of extended trajectory
space. For electronically adiabatic processes, trajectories are
specified by a sequence of points in phase space. One can
sample trajectory space by sampling initial conditions of the
trajectories, i.e., by sampling phase space. Surface hopping
trajectories in contrast, are specified not only by their initial
phase points and initial surface but also by the times on
phase points at which the hops occur. The space of all sur-
face hopping trajectories will be called extended trajectory
space, and the ants algorithm, anteater algorithm, and new
algorithm are all methods for sampling extended trajectory
space.

II.A. Ants algorithm

In the ants algorithm15 each trajectory in the ensemble
begins the simulation on a particular potential energy surface
and is integrated to the first decision pointt1 , at which it
splits into two branches. One branch continues to follow the
initial potential energy surface and is called the nonhopping
branch, whereas the other branch hops to follow the unoccu-
pied potential surface and is called the hopping branch. Each
of these resulting branches is assigned a weight according to
the transition probabilityPa→b(t1) such that the total weight
of both branches adds up to one, i.e.,

whop5Pa→b~ tn!,
~1!

wnon512Pa→b~ tn!,

wherewhop is the weight assigned to the hopping branch, and
wnon is the weight assigned to the nonhopping branch. The
branches are then propagated independently, and each of
them proceeds to additional decision points. The final weight
of each branch is the product of all weights assigned at every
decision point in that branch’s history. As a result, the
weights assigned to each branch get smaller and smaller as
the number of branches gets larger and larger. The repeated
branching process results into a swarm of trajectories that is
analogous to a swarm of ants—hence the name, ants method.
The advantage of this method is that it allows a trajectory to
follow nonadiabatic events independent of the weights of the
magnitudes of their probabilities. However, this is also the
major disadvantage of the ants method. An ants simulation
with Ndec decision points would result in 2Ndec branches for
each initial trajectory.~Note that several initial trajectories
are required to sample the initial conditions of the system.!
When the ants method was first proposed, the primitive tra-
jectory surface hopping algorithms then in use restricted sur-
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face transitions to predefined seams, thus keepingNdecsmall.
However the modern algorithms based on fewest-switches
considerations allow hopping decisions after every time step.

II.B. Anteater algorithm

The anteater method is the most widely used sampling
algorithm for TSH simulations. In the anteater algorithm, the
branching event is replaced by a stochastic event. Specifi-
cally, the nonadiabatic transition probabilityPa→b(tn) at
each decision pointtn is compared to a random numberl
between 0 and 1. IfPa→b(tn) is greater thanl, the hopping
branch is followed and is assigned weight 1. The nonhopping
branch is not followed and is assigned a weight of 0, i.e.,

whop51,
~2!

wnon50.

If Pa→b(tn) is less thanl, the nonhopping branch is fol-
lowed, and the trajectory remains on the initial potential sur-
face with weights

whop50,
~3!

wnon51.

This scheme gets the name anteater from the analogy that an
anteater is most likely to follow the path where the probabil-
ity of finding ants is greatest.

Each anteater trajectory finishes with a weight of unity
on one of the two potential energy surfaces and final results
are obtained by averaging over many anteater trajectories.
The anteater implementation of TSH is widely used and is
entirely satisfactory for systems where the coupling between
the potential energy surfaces is large enough that the prob-
ability of nonadiabatic events is on the order of 1021– 1023.

II.C. Generalization to more than two electronic states

In cases with more than two coupled potential energy
surfaces, the ants and the anteater algorithms are slightly
more complicated. Consider a system withS coupled poten-
tial energy surfaces, where surface 1 is occupied initially.
At the first decision point, the transition probabilities
from surface 1 to each of the other target surfaces are
P1→2 ,P1→3 ,...,P1→g ,...,P1→S . For the case of multiple
potential energy surfaces the variablewhop is the sumPi→ j

over all iÞ j , wherei is the current surface.
In the anteater algorithm, the transition probabilities are

compared to a random numberl ~between 0 and 1! to deter-
mine the surface on which to continue the trajectory. A hop
to surface 2 occurs ifl,P1→2 , a hop to surface 3 if
P1→2,l,P1→21P1→3 , and so on. If no hop occurs, the
trajectory remains on surface 1. In any event the trajectory
then moves on to the next decision point.

In the ants algorithm, branching is allowed at every de-
cision point from potential energy surface 1 to all the other
unoccupied potential energy surfaces. The weight of a hop-
ping branchwhop

1→g from surface 1 to surfaceg, shown ex-
plicitly by the superscript 1→g, is determined by the tran-
sition probability for that surface, i.e.,whop

1→g5P1→g . The
total weight of all of the hopping branches and the nonhop-

ping branch is one, i.e., the weight of the nonhopping branch
is wnon

1→1512(P1→21P1→31,...,P1→g1,...,P1→S). Each
of the hopping branches and nonhopping branch propagate
independently, branching further at decision points. Thus the
total number of branches would beSNdec for each initial
trajectory.

III. ARMY ANTS ALGORITHM

Consider a weakly coupled system with a nonadiabatic
reaction probability of;1028. Since it requires on the order
of 100 reactive trajectories to obtain reasonable final-state
statistics for a given final electronic state, the anteater algo-
rithm would require a minimum of 1010 trajectories to obtain
reasonably converged results. In the ants algorithm, every
trajectory would sample the low-probability events, but the
large number of resultant branches makes the ants method
computationally expensive to implement, as described ear-
lier. We propose a new algorithm, called the army ants algo-
rithm, that is capable of performing calculations for systems
with weakly coupled electronic states.

In essence, the army ants method incorporates the sto-
chastic elements of the anteater method~i.e., nonadiabatic
events do not occur at every time step but instead occur
randomly according to some sampling probability! as well as
the branching elements of the ants method~i.e., trajectories
are propagated with fractional weights!. By allowing
branches to propagate with fractional weights, the ants algo-
rithm is able to sample the critical regions of extended tra-
jectory space, including those associated with low-
probability events that the anteater algorithm ‘‘misses’’ when
the number of trajectories is too small. In fact the army ants
algorithm reduces in certain limits to the ants or anteater
algorithms, as described later in this section.

The army ants algorithm is defined in terms of a param-
eterh such that 0<h<1. The value ofh is compared to the
nonadiabatic probabilityPa→b at each decision pointtn . The
greater of the two values is calledgn :

gn5maxHh
Pa→b~ tn!. ~4!

In order to determine whether branching is allowed at that
decision point a random numberl between 0 and 1 is drawn
and compared togn with the following consequences:

l.gn : no branching,
~5!

l,gn : branching.

In a nonbranching case, the trajectory moves on to the next
decision point while remaining on the current surface. If, on
the other hand, branching occurs, then the branch weights
whop for the hopping branch andwnon for the nonhopping
branch are calculated as follows:

whop5
Pa→b~ tn!

gn
,

~6!

wnon512
Pa→b~ tn!

gn
.
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Another random number is drawn and the hopping branch is
propagated if the random number is greater than 0.5, other-
wise the nonhopping branch is followed, i.e., one follows
each branch 50% of the time, even though they have differ-
ent weights. We can summarize a successful branching event
as follows:

Step 1. Initiate a trajectory from the ensemble on the
appropriate potential energy surface, and at each decision
point tn computePa→b(tn).

Step 2. Obtaingn5max@h,Pa→b(tn)#.
Step 3. Generate a random numberl1 between 0 and 1.
Step 4. Comparegn andl. Branch ifl1,gn and calcu-

late whop andwnon.
Step 5. Generate another random numberl2 between 0

and 1.
Step 6. Choose the hopping branch ifl2.0.5, and

choose the nonhopping branch otherwise.

It should be noted that the army ants algorithm reduces
to the anteater algorithm forh50, since the maximum of
@0,Pa→b(tn)# at every decision point yieldsgn5Pa→b(tn)
which on substitution in Eq.~6! results in branch weights for
the anteater algorithm as in Eqs.~2! and ~3!. On the other
hand the army ants algorithm can be reduced to the ants
algorithm by choosingh51. In this case, the value ofgn is
equal to 1~sincegn5max@1,Pa→b(tn)#) at every time step,
and substitution in Eq.~6! then results in ants algorithm
weights as in Eq.~1!. The parameterh therefore plays a role
in the efficiency of the calculation, and in facth may be
optimized for this purpose. Depending upon the magnitude
of coupling, the amount of branching character can be regu-
lated by choosing the most appropriate value ofh. This at-
tribute makes the algorithm universally applicable to any
kind of system, irrespective of the strength of coupling be-
tween the electronic states.

It is important to notice that all three trajectory surface
hopping sampling algorithms@ants (h51), anteater (h
50), and army ants~nonintegerh!# achieve the same results
in the limit of infinite sampling, i.e., the choice ofh does not
affect the results for a large sample.

The army ants algorithm can be implemented in two
different ways, depending on howh is chosen. We label the
first implementation as ‘‘fixed-h mode’’ and the second
method as ‘‘k mode,’’ the reasons for which are given in the
following:

~1! In fixed-h mode,h at every step is set equal toh0 ,
which is an input parameter in this mode. This parameter is
the target value of the fraction of decision points at which a
branch occurs. For example, in the system considered in this
paper, a typical trajectory encounters aboutNdec5900 deci-
sion points. If one’s target is for every trajectory to branch at
six time steps and not branch at the remaining steps, one
should seth0 equal to 6/900 or about 731023. Depending
upon the amount of branching desired, any value can be
chosen forh0 , provided only that it is a number between 0
and 1.

~2! In k mode, the distribution of branching points is
independent of the time step taken by the integrator. The
input parameter in this implementation is a constantk that

has units of inverse time~and can be considered analogous to
a first-order rate constant!. The inputk value is then multi-
plied by the instantaneous time stepDtn at each decision
point n, to obtain a unitless time-dependent variable given
by

h5kDtn . ~7!

By allowing h to vary in this way at each decision point, we
can regulate the branching because an integrator with vari-
able step size can take small steps on the potential energy
surface where the potential is steep, but a smaller value ofh
in this region will prevent excessive branching events. Con-
versely,k mode allows for more branching in the areas on
the potential energy surface where the potential is flat and the
integrator takes large steps.

The input parameterk can have any value, but a good
value fork can be obtained from

k5
hopt

Dtavg
, ~8!

wherehopt is an optimal value forh, andDtavg is the average
time step of the integrator. For the present paper, this ap-
proach was used to obtain thek parameter for thek mode
army ants calculations.

It should be noted that decision points occur all along the
classical trajectory, even when the system is far from the
region of maximum coupling. When this is the case,whop

may be several orders of magnitude smaller than probabili-
ties of interest. In the army ants algorithm, the hopping
branch is followed 50% of the time independent of the mag-
nitudes of weights, but the branch may have a very small
weight such that it will not contribute significantly to the
final results. We therefore introduce a cutoff parameterwcut

such that ifwhop,wcut at tn , the hopping decision is ignored
at tn . For all calculations in the present article we setwcut

equal to 1310220.
Since the new algorithm is more evolved and more effi-

cient than the previous ones, we named it the army ants
algorithm in recognition of a highly organized species of ants
called army ants inhabiting the equatorial forest of planet
Earth. In particular, a collection of army ants, taken as a
whole, functions as a well-integrated social entity with the
extraordinary ability of forging into unknown territory, and
we can hope that our collection of trajectories is equally
adept at sampling an unknown extended-trajectory-space and
discovering its most significant features.

The extension of army ants algorithm to more than two
surfaces is straightforward. For example, for three surfaces
one would follow each surface one-third of the time~at ran-
dom! at each branching point. Actually, one will stay unbi-
ased even if one changes the fraction of the time that each
surface is followed. If one were especially interested in the
detailed product distribution on surface 2, one could follow
surface 2 at 70% of the branches~chosen at random! and
surfaces 1 and 3 at 15% each. In the present paper we have
two surfaces, and we follow each surface at 50% of the
branches.

We have discussed three sampling schemes~ants, ant-
eater, and army ants! for TSH. We next discuss several vari-
ants of the TSH approach that differ in their treatment of
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frustrated hops. Any of the sampling schemes can be com-
bined with any of these variants, and in the present article we
will illustrate the new army ants algorithm with four of the
variants, namely TFS2, FSTU2, FSTU1, and FSTU¹V.

In trajectory surface hopping calculations, trajectories
make sudden hops from an occupied surface to a target po-
tential energy surface, and the potential energy of the system
changes discontinuously when the system hops. To conserve
the total energy of the system, the kinetic energy of the sys-
tem on the new surface is adjusted by changing the nuclear
momentum along the hopping vector.~In the present paper,
the hopping vector is always a unit vector parallel to the
nonadiabatic coupling vectord, a choice that has been pre-
viously been justified by theoretical arguments19,24 and by
testing33 against accurate quantum mechanical calculations.!
At certain points along a trajectory, a hopping attempt from a
lower-energy to a higher-energy electronic state may occur
such that the kinetic energy associated with the component
of nuclear momentum along the hopping vectorh is less than
the potential energy gap between the occupied and the target
electronic states. Such hops are classically forbidden, and are
called ‘‘frustrated hops.’’ Frustrated hops are common in
semiclassical trajectory calculations, and various prescrip-
tions have been proposed to treat frustrated hops. Earlier
treatments include ignoring the frustrated hop, denoted by
‘‘ 1,’’ or reflecting the nuclear momentum alongh, denoted
by ‘‘ 2.’’ When implemented with the TFS method, these
choices are labeled TFS1 and TFS2. The TFS2 scheme is
the original version of TFS,22,67 and TFS1 was introduced
later,26 although a combination of1 and 2 was used even
earlier in a general surface hopping scheme.18 In our group,
we compared the performance of these variants
systematically44 and then introduced a new method of treat-
ing the frustrated hops, called the fewest-switches time un-
certainty ~FSTU! method.46 The FSTU method is like TFS
except that where frustrated hops are encountered the system
may hop nonlocally. In the FSTU method, some hops remain
frustrated, and these can be ignored~1! or cause reflection
~2!, yielding FSTU1 and FSTU2. Another FSTU prescrip-
tion proposed recently is the FSTU¹V53 scheme that uses the
gradient information of the target potential surface to deter-
mine how momentum will be treated at frustrated hops.

We performed calculations on a realistic model system
called the YRH system using the above-noted variants of the
TSH approach along with the anteater and army ants sam-
pling algorithms. Details of the YRH system are provided in
the following section.

IV. THE YRH MODEL SYSTEM

The YRH model system44 is a three-body system that
has been developed in our group to study weakly coupled
systems. The model reaction is an electronically nonadiabatic
scattering process between an excited atom Y* and a
ground-electronic state diatomic molecule RH in a specific
quantum state (n, j ), wheren the vibrational quantum num-
ber, andj is the rotational quantum number. In addition to
electronically adiabatic, nonreactive scattering, the collision
can result in two possible outcomes as shown in the follow-
ing equations:

Y* 1RH~n, j !→ HR1YH~n8, j 8!, reaction
Y1RH~n9, j 9!, quenching, ~9!

where Y, R, and H are model atoms, the asterisk denotes
electronic excitation, and the primes and double primes de-
note the quantum numbers of the diatomic molecules associ-
ated with the reactive and quenched molecular arrangements,
respectively.

The probability of the scattering process resulting in re-
action is calledPR , whereas the probability of a quenching
process is represented asPQ . The sum of these probabilities
is the total nonadiabatic probabilityPN for a system to
emerge in the ground electronic state in a scattering event,
i.e.,

PN5PR1PQ . ~10!

The details of the model YRH system have been re-
ported in earlier work44 in which a family of four YRH po-
tential energy matrices~PEMs! was introduced. Briefly, the
masses of Y, R, and H are taken as 10, 6, and 1.00783 amu,
respectively. The model Y atom is electronically excited with
energy equal to 0.36 eV, and the equilibrium bond energies
for the RH and YH molecules are 3.9 and 4.3 eV, respec-
tively. The zero point energies of RH and YH are 0.18 and
0.19 eV, respectively. The coupled potential energy surfaces
are defined in the diabatic representation to have qualita-
tively similar shapes to those for the Br* 1H2 system.32 The
energy gap between the two potential energy surfacesU11

andU22 remains almost constant at 0.36 eV as Y approaches
RH, and the diabatic couplingU12 is localized in the inter-
action region. Adiabatic potential energy surfaces were ob-
tained by diagonalizing the diabatic potential energy matrix,
as described elsewhere.2,11,44

Because the diabatic coupling is nonzero only in the re-
gion where all atoms are interacting, the diabatic and adia-
batic representations are the same in the asymptotic regions.
If the classical minimum energy of the R1YH products is
defined as zero, we then obtain the values in Table I for the
various vibronic thresholds. It is also of interest to give the
energies of a few rotationally excited states:

Y* 1RH~n50, j 51!, 0.945 eV,

R1YH~n851, j 8512!, 0.813 eV,

Y1RH~n851, j 953!, 0.954 eV,

Y1RH~n851, j 955!, 0.987 eV.

Each member of the family differs from the others only
in the magnitude of the diabatic coupling surface, and each
may be labeled by the maximum value of its diabatic cou-
pling U12

max. For the present work, we have extended the

TABLE I. Vibronic thresholds~eV! for the YRH test systems.

n Y* 1RH(n, j 50) Y1RH(n, j 50) R1YH(n, j 50)

0 0.942 0.582 0.185
1 1.292 0.932 0.543
2 1.624 1.264 0.886
3 1.940 1.580 1.211
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YRH family of four surfaces (U12
max50.2, 0.10, 0.03, or 0.01

eV! to include a very weakly coupled system with the maxi-
mum diabatic couplingU12

max50.0001 eV. We will focus spe-
cifically for the present work on the set of coupled potential
energy surfaces withU12

max50.0001 eV in order to demon-
strate the efficiency of the army ants algorithm, although we
also report some preliminary calculations withU12

max

50.2 eV.

V. FINAL STATE ANALYSIS

The final product analysis for army ants trajectories re-
quires an ensemble of trajectories, for which information
about the final arrangement and the final weight is known for
each trajectory. Each trajectory in the ensemble, denoted by
index i , finishes the simulation with some weightWi that is
the product of the weights assigned to it at every decision
point along the propagation of the trajectory. By using the
histogram method,3,27 each electronically nonadiabatic tra-
jectory is also assigned valuesm ri for three of the applicable
final quantum numberm r , where m25n8, m35 j 8, m4

5n9, m55 j 9, and m1 is the final electronic-arrangement
quantum numbera, which is assigned as 1 for Y* 1RH, 2
for R1YH, and 3 for Y1RH. Note thatm1i , m2i , andm3i

are assigned ifa52, andm1i , m4i , andm5i are assigned if
a53.

If the total number of trajectories isNtraj , then the prob-
ability of a given electronic arrangement is

Pa5
( i

NtrajWidm1ia

Wtot
, ~11!

where

Wtot5(
i

Ntraj

Wi . ~12!

We also labelP2 as PR (R denotes reaction! and P3 as PQ

(Q denotes quenching!. The total probability of an electroni-
cally nonadiabatic outcome isPN and is defined in Eq.~10!.
The final quantum states of the diatomic products are calcu-
lated according to the following equations using the energy
nonconserving histogram method, as discussed elsewhere.27

The first moments of the final vibrational and rotational
quantum numbersm r are given by

^m r&5
( i

Ntrajm ri Widm1iar

WtotPar

, ~13!

wherea25a352 anda45a553. Note thatPa is the mean
over all the trajectories, and̂m r& is the mean over the rel-

evant subset of trajectories. To estimate the sampling errors
in all the above observable quantities, we use a new method
described in the following section.

VI. BOOTSTRAP RESAMPLING:
METHOD OF ERROR ANALYSIS

The bootstrap method64–66 of error analysis is a resam-
pling technique that can be used to estimate the sampling
distribution of any well-defined function of sampled data. In
general, resampling techniques are widely used statistical
tools that are favored by virtue of their robustness and sim-
plicity. In cases where there is no information about the un-
derlying distribution of the sample and no analytical formu-
las are available, this method proves to be very useful.

In the army ants method, branching is a stochastic pro-
cess, but due to the fractional weight carried by the trajecto-
ries the usual Monte Carlo error formulas3 cannot be applied.
Error analysis was therefore carried out by the bootstrap re-
sampling method.

The bootstrap method was first introduced by Efron and
was named with the notion of pulling oneself out of the mud
by one’s own bootstraps.64 In particular, in cases where the
knowledge of the distribution is lacking, the sample itself
may be taken as the best guide to the sampling distribution.
The bootstrap method is applicable to our problem because
our sample is unbiased and also is uncorrelated. In the boot-
strap method, the initial sample is resampled by creating
large number of bootstrap samples. The bootstrap estimation
procedure consists of the following steps:

~1! Take the original data set withN data points:
(x1 ,x2 ,...,xi ,...,xN) and call it B0 . Calculate the statistic of
interest, which in this example is the meanx̄.

~2! Draw a sample ofN data points at random ‘‘with
replacement’’ from the initial set B0 and name the new set
bootstrap sample 1 (B1). All data points for B1 are selected
from B0 at random, using a random number generator, in
such a way that once a data point has been drawn its value is
recorded in B1 , and it is replaced back in B0 to assure that in
the next draw all the data points again have equal probability
of being drawn. It is therefore likely that some data points in
the new set will occur more than once. Calculate the statistic
of interest (x̄) for B1 just as it was done for B0 . Call thisx̄1 .

~3! Repeat, the second stepM times, whereM is a large
number, to produce B2 ,...,Bm ,...,BM . Calculate the statistic
of interest (x̄) for each of them. Label thesex̄m .

~4! Calculate the average value of the statistic of interest
over all the bootstrap cycles by

TABLE II. Results for anteater and army ants (h050) calculations using the FSTU¹V method, for the Y* 1RH (n50,j 50) system with a total energy of
1.10 eV and withU12

max50.2 eV using 100 000 trajectories.

Method h0 PR ^n8& ^ j 8& PQ ^n9& ^ j 9&

Anteatera ¯ (1.3860.03)31022 1.1160.02 12.860.13 (4.3960.07)31022 0.9860.01 6.3160.07
Army antsb 0.0 (1.4160.03)31022 1.1260.02 12.860.13 (4.4260.06)31022 0.9760.01 6.3060.07

aAnteater calculations using the original, unmodified method and the Monte Carlo error formula of Ref. 3.
bAnteater calculations were done using the army ants algorithm withh50. The errors were estimated using 10 000 bootstrap cycles.
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mbootstrap5
(m51

M x̄m

M
. ~14!

~5! Calculate the standard deviation of the calculated
value of the statistic using

sbootstrap5A(m
M~ x̄m2mbootstrap!

2

M21
. ~15!

The bootstrap method is very general. We expect, for
example, that the bootstrap method will be very useful for
calculations employing smooth sampling methods,3 because
standard error formulas are not applicable to smooth sam-
pling results. In both histogram and smooth sampling calcu-
lations the final observables are weighted means, but the
bootstrap analysis does not require this, and it can be used to
estimate the sampling distribution of any well-defined func-
tion of the sample data.

VII. CALCULATIONS AND RESULTS

The semiclassical calculations were done using version
7.0 of the nonadiabatic trajectory surface hopping code
NAT.68 Our first objective was to confirm that both anteater
and army ants results converge to the same semiclassical
result. Also, we wanted to compare the army ants bootstrap
error estimates with the anteater error estimates that were
obtained using the analytical3 formula. Therefore, we applied
both the anteater and army ants sampling schemes to the
YRH system with relatively strong couplingU12

max50.2 eV
for which anteater results have already been reported.53 Cal-
culations were performed using the FSTU¹V method for the
original, unmodified, anteater algorithm and for the new
army ants algorithm in the anteater limit in the fixed-h

implementation withh050; in both cases we propagated
100 000 trajectories, and we used the adiabatic representa-
tion. The results obtained by both of the methods are shown
in Table II. The nonadiabatic probabilities,PR andPQ , with
their respective vibrational and rotational moments, show
very good agreement between the methods. The error analy-
sis for the observable quantities in the army ants case was
done by the bootstrap technique using 10 000 bootstrap
cycles.~A study of convergence with respect to the number
of bootstrap cycles is given in Appendix A.! The bootstrap
error estimates of army ants run, shown in Table II, match
well with the anteater analytical error estimates. This con-
firms that in the limit ofh050, the bootstrap method can be
successfully applied to obtain the same error estimates as
from the analytical formula.

To check the bootstrap method for the army ants calcu-
lations for values ofh0 other than 0, we performed calcula-
tions on larger sets of army ants trajectories for the optimum
h0 value of 131022. The aim of this calculation was to
validate that the bootstrap method is applicable for the army
ants algorithm. The error estimates are presented in Table III,
and it can be seen that in most cases the bootstrap error
estimates for the observable quantities decrease approxi-
mately by the inverse of the square root of the number of
trajectories used for the calculations, which is the Monte
Carlo result that is expected on general principles. This fur-
ther validates the use of the bootstrap method for analyzing
the results of army ants calculations.

To test the merit of the new algorithm we applied the
army ants algorithm to a system for which anteater calcula-
tions are not computationally affordable. In particular, the
army ants algorithm was used for Y* 1RH (n50,j 50) with

TABLE III. Bootstrap analysis resultsa for army ants calculations.b

Ntraj PR ^n8& ^ j 8& PQ ^n9& ^ j 9&

100 000 (1.3660.034)31028 1.3360.019 12.560.115 (3.2860.046)31028 1.1360.010 4.8360.071
200 000 (1.3460.023)31028 1.3060.014 12.760.09 (3.3160.031)31028 1.1460.007 4.8360.059
300 000 (1.3560.020)31028 1.3160.011 12.760.067 (3.3360.025)31028 1.1360.006 4.8460.041
400 000 (1.3660.019)31028 1.3160.008 12.660.051 (3.3060.021)31028 1.1360.006 4.8760.037

aError estimates were calculated using 10 000 bootstrap cycles.
bArmy ants calculations were performed in the fixed-h mode withh05131022 using the FSTU¹V method for
Y* 1RH (n50,j 50), for the total energy 1.10 eV withU12

max50.0001.

TABLE IV. Results for Y* 1RH (n50,j 50) system for the total energy 1.10 eV withU12
max50.0001 eV in the fixed-h mode of army ants algorithm, for

100 000 trajectories.a

Method h0 PR ^n8& ^ j 8& PQ ^n9& ^ j 9&
Timeb

~h!

Quantum ¯ 1.2131028 0.90 11.6 3.3531028 0.93 3.28 ¯

Anteaterc 0.0 0d
¯ ¯ 0d

¯ ¯ 9.4
TFS2 1.031022 (1.3560.04)31028 1.3060.02 13.460.11 (3.5960.05)31028 1.1960.02 5.0360.07 10.2
FSTU2 1.031022 (1.3960.03)31028 1.2360.02 12.360.09 (3.3960.05)31028 1.0760.01 5.1760.09 9.9
FSTU1 1.031022 (1.3860.03)31028 1.2460.02 12.260.10 (3.3860.05)31028 1.0760.01 5.1760.09 10.0
FSTU¹V 1.031022 (1.3360.03)31028 1.3360.02 12.560.11 (3.2860.05)31028 1.1360.02 4.8360.07 10.0

aError estimates were calculated using 10 000 bootstrap cycles.
bOn four processors.
cAnteater calculations for 100 000 trajectories fail to show any statistics.
dLess than 1025
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a scattering energy of 1.1 eV and withU12
max50.0001 eV.

Table IV shows the results obtained and the computer time
taken for the calculations using TFS2, FSTU2, FSTU1,
and FSTU¹V method in the fixed-h mode of army ants and
a value ofh0 value of 131022. The criterion used for the
choice of h0 is discussed in Appendix B. The army ants
results are very converged well for 100 000 trajectories. In
contrast, the anteater calculations failed to provide any elec-
tronically nonadiabatic final states in 100 000 trajectories.
The error estimates on the observable quantities, i.e.,PR ,
PQ , ^n8&, ^ j 8&, ^n9&, and ^ j 9& were calculated using the
bootstrap resampling technique described in Sec. VI. For the
purpose of comparison the quantum mechanical scattering
results at scattering energy 1.10 eV are also shown in
Table IV.

In order to demonstrate the alternativek mode imple-
mentation of the army ants algorithm, we performed the
FSTU¹V calculations with same initial conditions as those
for the fixed-h mode in Table V. We used a variable-step-size
Bulrisch–Stoer33,69 integrator, and the value of the input pa-
rameter wask57.9531012 s21, which was obtained using
Eq. ~8! with the optimum value ofhopt5131022 and an
average integrator time step,tavg51.26 fs ~obtained by tak-
ing an average over a small set of trajectories!. The results
for both fixed-h mode andk mode calculations are summa-
rized in Table V. Both methods require about the same com-
puter time and converge to the same results, therefore con-
firming that the two implementations can be used
interchangeably.

Since quantum mechanical scattering results sometimes
oscillate as a function of scattering energy,44 we carried out
quantum mechanical calculations at seven energies. Appen-

dix C shows that the results vary systematically with energy
without significant oscillations so for testing the semiclassi-
cal methods we need not be concerned with oscillations.
Therefore, we compared the semiclassical army ants algo-
rithm results and quantum mechanical scattering calculations
at three different scattering energies centered at 1.10 eV. In
particular, for both methods, the results were obtained for
Y* 1RH (n50,j 50) with U12

max50.0001 eV at three values
of the total energy, namely 1.07, 1.10, and 1.13 eV. The army
ants calculations were performed using the FSTU¹V method
in the fixed-h mode withh0 equal to 131022. All quantum
mechanical calculations were obtained by the outgoing wave
variational principle70–72 using version 18.8 of theVP com-
puter code.73 The calculations involve 18 934 basis functions
~13 884 square-integrable functions and 5050 non-square-
integrable functions! in 334 channels~73 channels corre-
sponding to Y* 1RH, 107 corresponding to Y1RH, and
154 corresponding to R1YH); other details of the calcula-
tions have been reported earlier.44 The accurate quantum cal-
culations are well converged to at least the number of sig-
nificant figures shown in the tables, as demonstrated by their
stability to increasing the number of basis functions and
channels in each arrangement and increasing the number of
quadrature points. The comparison of quantal and semiclas-
sical results is presented in Table VI.

VIII. DISCUSSION

The results obtained by the army ants calculations indi-
cate a very significant improvement in efficiency as com-
pared to the existing surface hopping algorithms. It was
found that 100 000 army ants trajectories running in parallel

TABLE V. Results for calculations using FSTU¹V method for Y* 1RH (n50,j 50), for the scattering energy 1.10 eV withU12
max50.0001, using 100 000

trajectories for both modes of army ants algorithm.a

Mode
Input

parameter PR ^n8& ^ j 8& PQ ^n9& ^ j 9&
Timeb

~h!

Fixed-h 1.031022 (1.3360.03)31028 1.3360.02 12.560.11 (3.2860.05)31028 1.1360.02 4.8360.07 10.0
kc 7.9531012 (1.3460.03)31028 1.3460.02 12.360.11 (3.3460.05)31028 1.1560.01 4.6560.07 10.2

aError estimates were calculated using 10 000 bootstrap cycles.
bOn four processors.
cIn units of s21.

TABLE VI. Results for quantum mechanical scattering and semiclassical army ants calculations for Y* 1RH (n50,j 50) with U12
max50.0001 eV. The results

are compared at the three energies and also averaged over three values of scattering energy.

Method Energy~eV! PR ^n8& ^ j 8& PQ ^n9& ^ j 9&

Quantum
1.07 8.6431029 1.01 11.4 2.8731028 0.97 2.24
1.10 1.2131028 0.90 11.6 3.3531028 0.93 3.28
1.13 1.3331028 0.78 12.4 3.2831028 0.90 3.60

Average 1.1331028 0.89 11.8 3.1631028 0.93 3.04

Army antsa

1.07 (1.1660.03)31028 1.4160.02 12.060.12 (3.6460.05)31028 1.1660.01 4.4860.06
1.10 (1.3360.03)31028 1.3360.02 12.560.11 (3.2860.05)31028 1.1360.02 4.8360.07
1.13 (1.2960.03)31028 1.4060.02 12.560.12 (3.0460.05)31028 1.1560.01 4.8460.08

Average (1.2660.03)31028 1.3860.02 12.360.12 (3.3260.05)31028 1.1560.01 4.7260.07

aCalculations were performed in the fixed-h mode of the army ants algorithm withh05131022 using the FSTU¹V method for 100 000 trajectories.
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on four 375 MHz Power 3 WinterHawk1 processors of IBM
SP supercomputer take about 10 h to complete. There are
three slave processors running trajectories and one master
processor in control which is not load balanced; therefore the
computer time is between 30 and 40 processor hours. For the
purpose of demonstration we hypothetically assume propa-
gating trajectories by the existing anteater and ants methods
and compare the time required for each of them to give a
converged result for the YRH system withU12

max

50.0001 eV. In the ants method a single initial trajectory
taking toNdec number of decision points equal to 900 results
in 2900'10271 branches. In order to average over the initial
conditions we will need a minimum of 500 trajectories which
leads to an extraordinarily large number of resultant
branches, 500310271'5310273, each of which~on an aver-
age! would be integrated for half as long as an army ants or
anteater trajectory. The time taken to complete this ants
simulation is shown in Table VII. Consider now running ant-
eater trajectories for the system with the nonadiabatic prob-
ability of the order of magnitude;1028. This also requires
a large number of trajectories because a single nonadiabatic
event will be experienced in approximately 108 trajectories
and in order to get good statistics we would need a total of at
least a hundred nonadiabatic events which leads to;1010

trajectories. ~Recall that we want enough reactive and
quenched trajectories to converge the quantum number mo-
ments, i.e., averages of the classical analogs of the final vi-
brational and rotational quantum numbers.! The calculated
time required for this hypothetical simulation is also reported
in Table VII.

The huge computational requirements of the anteater
(;106 h) and ants (;3310269 h) methods were an insuper-

able impediment to carrying out semiclassical trajectory sur-
face hopping calculations on weakly coupled systems. In
contrast, the new and flexible army ants algorithm can be
adapted to systems with any kind of coupling, ranging from
weak to strong.

The availability of well converged surface hopping cal-
culations for a system with such a small probability of elec-
tronically nonadiabatic events allows us to test the semiclas-
sical simulations in a new dynamical regime where they have
never before been able to be tested. Table VIII shows the
mean unsigned relative errors. The average absolute error in
the nonadiabatic reaction probability is only 15%, and that in
the nonreactive quenching probability is only 8%. The aver-
age errors in the moments range from 7% to 58%. Consid-
ering the highly quantal character of these weakly allowed
processes, the semiclassical methods are surprisingly accu-
rate.

IX. CONCLUSIONS

The army ants algorithm is an efficient method for com-
puting the probabilities of nonadiabatic events in weakly
coupled systems. Since all trajectory surface hopping algo-
rithms, i.e., anteater, ants, and army ants, give the same con-
verged results in the limit of infinite sampling, one may
choose the algorithm that is most efficient. The present study
shows that the army ants algorithm is useful and accurate for
systems that are intractable by the two other sampling algo-
rithms that have been proposed.

The army ants algorithm successfully captures the most
desirable aspects of both the ants and anteater algorithms.
The new army ants algorithm retains the ants feature of as-
signing fractional weights to the daughter trajectories, and it
also incorporates the stochastic nature of the anteater algo-
rithm. The method is designed in such a way that it can be
applied to systems irrespective of the strength of the cou-
pling between the potential energy surfaces, thus providing a
general algorithm for performing trajectory surface hopping
calculations.

The present article also provides the first application of
the bootstrap method for error estimation in molecular tra-
jectory calculations. The method is quite successful, and it
should be useful for error estimation in general, not just for
army ants calculations.

Finally, the new algorithm allows us to test the trajectory
surface hopping method for much weaker transition prob-
abilities than has ever before been possible. For a transition
probability of the order 1028, the mean unsigned relative
error in the six observables that were calculated is only 26%.

TABLE VII. Time required for calculations on Y* 1RH (n50,j 50), for
the scattering energy 1.10 eV withU12

max50.0001 eV using either the fixed-h
mode or thek mode implementation of army ants algorithm, and estimated
time requirement to obtain similar converged results with the anteater and
the ants methods.

Method

Number of trajectories
Time required

~h!Initial Final

Army antsa 105 105 ;10
Anteaterb 1010 1010 ;106

Antsc 500 5310273 ;3310269

aTime required to run in parallel on four 375 MHz Power 3 WinterHawk
1 processors on the IBM SP supercomputer.

bEstimated time required to finish the anteater calculations using the same
number of processors as in the army ants calculations.

cEstimated time required to finish the initial ants trajectories and all the
resulting branches, using the same number and type of processors as in the
army ants calculations.

TABLE VIII. Mean unsigned relative errors~in %! for reaction probability, reactive moments, quenching
probability, and quenching moments.

Cases PR ^n8& ^ j 8& PQ ^n9& ^ j 9&

All 6a 15 48 7 8 21 58

aResults are averaged over the four cases in Table IV and the three cases in Table VI~for a total of six cases
since FSTU¹V at 1.10 eV occurs in both tables!.
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APPENDIX A: CONVERGENCE WITH RESPECT
TO NUMBER OF BOOTSTRAP CYCLES

The bootstrap method of error analysis resamples the
original data set by randomly selecting data points from the
original sample, with replacement, to generate a large num-
ber of bootstrap cycles, as explained in Sec. VI. To determine
the number of bootstrap cycles required for the error analysis
of the army ants runs, convergence studies of the error esti-
mates with respect to the number of bootstrap cycles were
performed. Bootstrap analyses were carried out for various
numbers of cycles using the results obtained by the FSTU¹V
method with the army ants algorithm in the fixed-h mode
with h0 equal to 131022 for Y* 1RH (n50,j 50) with
U12

max50.0001 eV at scattering energy 1.10 eV. Table IX
shows the values of the bootstrap averages and error esti-
mates for 5000, 10 000, and 20 000 bootstrap cycles and the
computer time taken by each of the runs. Notice that the
computer times for analyses are less that 1% of the computer
time required to run the trajectories, which is between 30 and
40 processor hours for 105 trajectories. It was found that
10 000 bootstrap cycles yield good convergence, and there-
fore 10 000 bootstrap cycles are used for the bootstrap analy-
ses in this paper.

APPENDIX B: CHOICE OF INPUT PARAMETER
FOR BRANCHING

In the fixed-h mode of the army ants algorithm, the
value of the input parameterh0 controls the number of
branching events that occur along each trajectory. The
amount of branching that is desired can depend upon the
strength of the coupling between the potential energy sur-
faces. As mentioned in Sec. III, the value ofh0 can be any
number such that 0<h0<1, but the efficiency of the calcu-
lation can depend strongly onh0 . An efficient value ofh0 is
one that requires the least number of trajectoriesNtraj to ob-
tain results for the observable quantitiesPa and^m r& that are
converged to same small errorsD« r . To determine the most
efficient value ofh0 for the weakly coupled model systems
studied here@specifically for Y* 1RH (n50,j 50) at scat-
tering energy 1.10 eV withU12

max50.0001 eV], calculations
were performed for a range ofh0 values using the FSTU¹V
method, as shown in Table X. The results for the probabili-
ties, i.e., PR , PQ , and for the moments, i.e.,̂n8&, ^ j 8&,
^n9&, and^ j 9&, along with the error estimates, are shown in
Table X. Error analyses were carried out using the bootstrap
method with 10 000 bootstrap cycles for eachh0 value.

With h05131024, good convergence was obtained
with 500 000 trajectories, which is a fairly large number due
to the fact that at small values ofh0 the number of branching
events encountered by each trajectory is small. Sinceh0

5131024 provided the largest sampled space, we used the
values in row 1 along with the Monte Carlo error formula

TABLE IX. Convergence test with respect to number of bootstrap cycles. The army ants calculations were carried out in the fixed-h mode withh051.0
31022, using the FSTU¹V method, for Y* 1RH (n50,j 50), with scattering energy 1.10 eV andU12

max50.0001.a

Number of
bootstrap cycles PR ^n8& ^ j 8& PQ ^n9& ^ j 9&

Timeb

~min!

5 000 (1.3360.032)31028 1.3360.02 12.560.11 (3.2860.048)31028 1.1360.02 4.8360.08 5.3
10 000 (1.3360.034)31028 1.3360.02 12.560.11 (3.2860.046)31028 1.1360.02 4.8360.07 9.8
20 000 (1.3360.034)31028 1.3360.02 12.560.11 (3.2860.046)31028 1.1360.02 4.8360.07 21.2

a100 000 trajectories used for the bootstrap analysis.
bComputer time for the bootstrap analysis on a single processor.

TABLE X. Effect of the parameterh0 in the fixed-h mode army ants algorithm calculations, for Y* 1RH (n50,j 50), with scattering energy 1.10 eV and
U12

max50.0001, using the FSTU¹V method.a

h0 Ntraj
b PR ^n8& ^ j 8& PQ ^n9& ^ j 9& Ntraj

P c Ntraj
M d

131024 500 000 (1.1660.101)31028 1.2460.05 13.160.33 (3.5160.121)31028 1.0460.02 5.4760.18 500 000 500 000
531024 300 000 (1.2360.091)31028 1.3060.05 13.260.29 (3.2360.110)31028 1.0560.02 5.1260.16 247 116 300 000
131023 200 000 (1.2160.092)31028 1.3360.05 12.860.27 (2.8360.111)31028 1.1060.02 5.2860.21 167 029 272 222
531023 100 000 (1.2560.045)31028 1.3060.03 13.060.16 (3.1260.057)31028 1.1360.01 5.1060.10 22 429 30 864
831023 100 000 (1.2860.034)31028 1.3260.02 12.560.12 (3.1860.048)31028 1.1560.01 4.6760.08 15 554 30 250
131022 100 000 (1.3360.034)31028 1.3360.02 12.560.11 (3.2860.046)31028 1.1360.01 4.8360.07 14 280 25 000
231022 150 000 (1.3660.022)31028 1.3260.01 12.460.07 (3.3160.032)31028 1.1760.01 4.3060.05 10 261 37 500
531022 400 000 (1.1960.021)31028 1.2460.01 11.960.08 (3.0860.033)31028 1.1660.01 4.5060.06 29 475 100 000
131021 500 000 (1.2960.032)31028 1.3160.06 12.160.11 (3.2160.033)31028 1.1360.02 4.7760.07 50 821 500 000

aError estimates were calculated using 10 000 bootstrap cycles.
bNumber of trajectories used for this row of results.
cMaximum of the two values of the number of trajectories required to convergePR andPQ to the same levels as row 1, as estimated by using Eq.~B1!.
dMaximum number of trajectories required for convergence of all moment quantities (^n8&,^ j 8&,^n9&, and^ j 9&) to the levels of row 1, as estimated by using
Eq. ~B1!.
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D«}
1

ANtraj

~B1!

to estimate the number of trajectories needed to obtain the at
least as small as in row 1 forPR andPQ , and the larger of
the two values is listed asNtraj

P in Table X. Similarly, the
maximum value of the estimated number of trajectories
needed for good convergence of~at least as good as row 1!
^n8&, ^ j 8&, ^n9&, and^ j 9& is listed asNtraj

M in Table X. From
Table X, it can be concluded that the least number of trajec-
tories required to obtain the same relative errors as obtained
in the run with 500 000 trajectories andh05131024 is ob-
tained usingh05231022 for the probabilities and using
h05131022 for the moments. Since usingh05131022

performs best on average for both probabilities and mo-
ments, it was concluded that this is the most efficienth0

value, that is,hopt5131022. With h0 equal to 131022,
only 25 000 trajectories are required to obtain good conver-
gence.

APPENDIX C: QUANTUM MECHANICAL
SCATTERING CALCULATIONS

Quantum mechanical scattering calculations for Y*
1RH (n50,j 50) with U12

max50.0001 eV were performed at
seven different values of the total energy centered at 1.10 eV,
as shown in Table XI. The average values for the observable
quantities over the entire set of scattering energies are also
shown in Table XI.
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